Birational motives, I: pure birational motives
نویسندگان
چکیده
منابع مشابه
Birational motives, I: pure birational motives
In the preprint [19], we toyed with birational ideas in three areas of algebraic geometry: plain varieties, pure motives in the sense of Grothendieck, and triangulated motives in the sense of Voevodsky. These three themes are finally treated separately in revised versions. The first one was the object of [21]; the second one is the object of the present paper; we hope to complete the third one ...
متن کامل2 7 Fe b 20 09 BIRATIONAL MOTIVES , I : PURE BIRATIONAL MOTIVES
In the preprint [19], we toyed with birational ideas in three areas of algebraic geometry: plain varieties, pure motives in the sense of Grothendieck, and triangulated motives in the sense of Voevodsky. These three themes are finally treated separately in revised versions. The first one was the object of [21]; the second one is the object of the present paper; we hope to complete the third one ...
متن کاملBirational Cobordisms and Factorization of Birational Maps
In this paper we develop a Morse-like theory in order to decompose birational maps and morphisms of smooth projective varieties defined over a field of characteristic zero into more elementary steps which are locallyétale isomorphic to equivariant flips, blow-ups and blow-downs of toric varieties (see Theorems 1, 2 and 3). The crucial role in the considerations is played by K *-actions where K ...
متن کاملIterative properties of birational rowmotion I
We study a birational map associated to any finite poset P . This map is a farreaching generalization (found by Einstein and Propp) of classical rowmotion, which is a certain permutation of the set of order ideals of P . Classical rowmotion has been studied by various authors (Fon-der-Flaass, Cameron, Brouwer, Schrijver, Striker, Williams and many more) under different guises (Striker-Williams ...
متن کاملOn Abelian Birational
For a smooth and geometrically irreducible variety X over a field k of characteristic 0, the quotient of the absolute Galois group Gk(X) by the commutator subgroup of G k̄(X) projects onto Gk. We investigate the sections of this projection. We show that such sections correspond to “infinite divisions” of the elementary obstruction of Colliot-Thélène and Sansuc. If k is a number field and the Tat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of K-Theory
سال: 2016
ISSN: 2379-1691,2379-1683
DOI: 10.2140/akt.2016.1.379